Nuestro sitio web utiliza cookies para mejorar y personalizar su experiencia y para mostrar anuncios (si los hay). Nuestro sitio web también puede incluir cookies de terceros como Google Adsense, Google Analytics, Youtube. Al usar el sitio web, usted consiente el uso de cookies. Hemos actualizado nuestra Política de Privacidad. Por favor, haga clic en el botón para consultar nuestra Política de Privacidad.

Hans Christian Ørsted y su gran descubrimiento

https://cdn11.bigcommerce.com/s-yzgoj/images/stencil/1280x1280/products/1558702/4223432/apief3ktf__01900.1626727680.jpg

Hans Christian Ørsted es recordado como una de las figuras fundamentales en la historia de la ciencia, especialmente por su contribución al descubrimiento de la relación entre la electricidad y el magnetismo. Este físico y químico danés, nacido en 1777, realizó un experimento crucial en 1820 que sentaría las bases del electromagnetismo, rama clave para el desarrollo tecnológico de los siglos XIX y XX.

El panorama científico previo a Ørsted

En la Europa de principios del siglo XIX, los científicos estaban fascinados por la electricidad y sus aplicaciones, pero aún no se comprendía la posible conexión entre los fenómenos eléctricos y magnéticos. Los trabajos de Alessandro Volta, Benjamin Franklin y otros habían proporcionado herramientas y primeras teorías, pero el magnetismo y la electricidad todavía eran considerados fenómenos separados.

Ørsted, bajo la influencia de las teorías del Naturphilosophie y del entorno intelectual en Copenhague, reflexionaba sobre la posible existencia de una relación oculta entre estos dos campos que parecían independientes. La idea de una conexión se discutía frecuentemente en los círculos académicos, aunque todavía no había pruebas experimentales.

El importante experimento de 1820

El descubrimiento realizado por Ørsted ocurrió mientras impartía una clase a sus estudiantes en la Universidad de Copenhague. Empleando una batería voltaica, cables y una aguja magnética (brújula), Ørsted notó que al activar el circuito de la batería, la aguja de la brújula se movía. La corriente que fluía creaba un campo magnético que influía sobre el imán de la brújula. Al detener la corriente, la aguja volvía a su posición original, indicando una conexión directa e inmediata entre los dos fenómenos.

El fenómeno que descubrió Ørsted puede resumirse de la siguiente manera: una corriente eléctrica produce un campo magnético a su alrededor. Este resultado parecía sencillo, pero revolucionó completamente la comprensión de la física de la época.

Implicaciones científicas y tecnológicas

El descubrimiento de Ørsted tuvo repercusiones inmediatas en la comunidad científica. André-Marie Ampère, inspirado por los resultados de Ørsted, desarrolló la teoría matemática del electromagnetismo, formulando las leyes que gobiernan la interacción entre corriente y magnetismo. Posteriormente, Michael Faraday aprovecharía este principio básico para descubrir la inducción electromagnética, que hizo posible el desarrollo de los generadores eléctricos.

Entre los aparatos que aparecieron de forma directa o indirecta debido a este descubrimiento se incluyen:

El electroimán: creado pocos años después, el electroimán es el fundamento de tecnologías presentes en grúas industriales, timbres, relevadores y trenes de alta velocidad.

El telégrafo eléctrico: uno de los sistemas iniciales de comunicación remota se fundamentó en el uso de campos electromagnéticos.

El motor eléctrico: entender la conexión entre electricidad y magnetismo facilitó el desarrollo de motores que convierten la energía eléctrica en movimiento, fundamental para la industrialización.

Establecimiento del electromagnetismo como disciplina científica

La observación efectuada por Ørsted permitió el avance hacia teorías más extensas. James Clerk Maxwell, varios años después, consiguió integrar las leyes del electromagnetismo en un sistema de ecuaciones, sentando las bases de una de las teorías físicas más destacadas de la era moderna. Áreas como la electrodinámica, las telecomunicaciones, la producción de energía eléctrica y la moderna electrónica derivan del principio descubierto por Ørsted.

Ejemplos prácticos y casos de aplicación

El efecto del trabajo de Ørsted se refleja en actividades diarias y en diferentes sectores industriales. Las tarjetas de crédito cuentan con bandas magnéticas, las puertas automáticas y los sistemas de seguridad utilizan sensores de electromagnetismo, y los tendidos eléctricos dependen de generadores basados en el principio de la inducción electromagnética, que se originó a partir del descubrimiento realizado por Ørsted. Incluso la tecnología de los celulares y la resonancia magnética nuclear tienen sus fundamentos en el electromagnetismo.

Asimismo, la pedagogía científica ha incorporado el experimento de Ørsted como un ejemplo esencial para ilustrar a estudiantes la trascendencia de la experimentación y la interconexión de fenómenos naturales anteriormente considerados independientes.

Legado e influencia cultural

Hans Christian Ørsted es una destacada personalidad en la ciencia de Dinamarca; su nombre se vincula con la unidad de medida del campo magnético en el sistema CGS, conocida como «oersted». Instituciones de investigación, galardones científicos y monumentos honran su legado. Además de su hallazgo, Ørsted fue un intelectual humanista que impulsó la unión de la ciencia y la cultura, creyendo firmemente en que comprender la naturaleza fomenta la creatividad y el avance social.

La labor de Ørsted ejemplifica la importancia de la observación rigurosa y la formulación de hipótesis en la construcción del conocimiento científico. Su experimento, sencillo en su concepción pero revolucionario en sus implicaciones, revela cómo una pregunta persistente puede abrir caminos inesperados y transformar para siempre el horizonte tecnológico y científico de la humanidad.

La fascinación por desvelar la naturaleza de la realidad llevó a Ørsted a explorar conexiones invisibles pero poderosas, recordándonos que los grandes descubrimientos a menudo nacen de la curiosidad y la capacidad de mirar más allá de las fronteras establecidas del conocimiento.

Por Otilia Adame Luevano

También te puede gustar